
Keyboard? How quaint.

Visual Dataflow Implemented in Lisp.

Donald Fisk

hibou@onetel.com

July 21, 2015



Table of Contents

Related Systems

Implementation Language

Syntax

Language Design

Iteration

The Interpreter

Types

Detecting Race Conditions

Future Work



LabVEIW

(from
http://www.physics.uoregon.edu/~torrence/classes/02S_390/

week4.html)

http://www.physics.uoregon.edu/~torrence/classes/02S_390/
week4.html


Prograph

(from
http://www.mactech.com/articles/mactech/Vol.10/10.11/

PrographCPXTutorial/index.html)

http://www.mactech.com/articles/mactech/Vol.10/10.11/
PrographCPXTutorial/index.html


max

(from http://sites.uci.edu/computermusic/category/

msp-tutorials/page/8/)
uzi is designed for rapid-fire output of a specified number of bang
messages.

http://sites.uci.edu/computermusic/category/
msp-tutorials/page/8/


Emblem

◮ Designed as the implementation language for Full Metal
Jacket.

◮ Simpler, but not gratuitously different from Common Lisp.

◮ Object oriented, single inheritance.

◮ Compiles to byte code.

◮ Has HTTP server; can browse Lisp objects from a web
browser.

◮ X11 library code.

◮ OpenGL library code.

◮ Other library code (some AI, data mining).



Simple Examples



Recursion

(defun myAppend (x y)

(if (null x)

y

(cons (car x)

(myAppend (cdr x)

y))))



Functional Arguments

(defun foo (x y)

(mapcar (lambda (z)

(cons z x))

y))



Dataflow

◮ Computations can proceed in parallel if all their inputs are
available. Execution doesn’t have to depend on a program
counter.

◮ This suggests programs should be directed graphs.

◮ Vertices should transform data, edges should transmit data.

◮ We gain:
◮ Parallel programming.
◮ Underpinned by graph theory.
◮ Homoiconicity.

◮ We lose:
◮ Flow of control.
◮ Variables.
◮ The need to parse programs before executing them.



Adding Edges

◮ Outputs can only be connected to inputs.

◮ Makes sense to restrict on type (e.g. we shouldn’t be allowed
to add one to a string).

◮ Requires composite types to work (or we won’t be able to add
one to the first of a list of integers).

◮ Suggests type inference (Hindley-Milner).

◮ We gain:
◮ Strong types, checked by a smart editor.

◮ We lose:
◮ The need to declare types.
◮ Runtime type errors.
◮ Compile time type errors.



Conditional Dataflow

◮ If when receives the value T on its first input, it outputs the
value received on its second input.

◮ If it receives NIL, it doesn’t output anything, so any
computation depending on the value output does not proceed.

◮ unless outputs only if it receives NIL.

◮ This suggests vertices don’t need to output every time they
receive inputs (Filters).

◮ We gain:
◮ a generalization of function;
◮ conditional execution without a special construct.



Iteration Without Loops

We can generalize further.

◮ Vertices should be able to output more than once after
receiving inputs (Iterators). This is useful when iterating
through, e.g.,

◮ integers;
◮ lists;
◮ data received over a connexion.

◮ Vertices should be able to output once after receiving inputs
one or more times (Collectors). This allows the accumulation
of results, e.g. for

◮ summation;
◮ storing in lists or arrays.

◮ We gain:
◮ iteration without loops or special constructs; still pure

dataflow.

◮ We lose:
◮ loops.



Iteration

Output 2nd Input 3rd Input Accumulator Output

of strip* of collectUntil*

(a b c) a NIL NIL

(a)

(b c) b NIL (b a)

(c) c T (c b a) (c b a)



Tags

◮ Values must be tagged.

◮ Values with the same tag are processed together.

◮ A function can be called when it has values with the same tag
for all its arguments.

◮ When an enclosure is entered (e.g. when a function is called),
its arguments are assigned new tags, until the enclosure is left.



Interpreter Code

◮ runNextTask ()

◮ executeVertex (vertex tag argList)

◮ sendValueToInput (inputOfDest tag value)

◮ everyInputHasAValueP (inputs tag)

◮ extractValuesFromInputs (inputs tag)

◮ importArgsIntoEnclosure (enclosure tag args)

◮ applyEnclosure (enclosure args)

(defun myAppend (x y)

(applyEnclosure (get myAppend enclosure)

(list x y)))



Type Inference

Input Types Function Output Types

Int pascal ?a

(List ?b) car ?b

?c

(List ?c) consa (List ?c)

(List ?d) reverse (List ?d)

(?e ?f) → (?g)

(List ?e) map2 (List ?g)

(List ?f)

?h

(List ?h) consb (List ?h)

Table: Vertex types in pascal

Function Output Type Input Type Function

pascal ?a (List ?b) car

car ?b (List ?c) consa
consa (List ?c) (List ?d) reverse

consa (List ?c) (List ?e) map2

reverse (List ?d) (List ?f) map2

map2 (List ?g) ?h consb
pascal ?a (List ?h) consb



Type Inference

Function Output Type Input Type Function

pascal ?a (List ?b) car

car ?b (List ?c) consa
consa (List ?c) (List ?d) reverse

consa (List ?c) (List ?e) map2

reverse (List ?d) (List ?f) map2

map2 (List ?g) ?h consb
pascal ?a (List ?h) consb

Table: Edge types in pascal

Value Type Input Type Fn.

0 Int ?c consa
iAdd (Int Int) → (Int) (?e ?f) → (?g) map2

Table: Constant types in pascal

Type Type

Variable Type

?a (List (List Int))

?b (List Int)

?c Int

?d Int

?e Int

?f Int

?g Int

?h (List Int)

Table: Inferred types in
pascal

(pascal 5) → ((1 4 6 4 1) (1 3 3 1) (1 2 1) (1 1) (1))



Race Conditions

◮ The result of a function should not depend on the order its
vertices are executed.

◮ If two or more edges converge on the same input, there might
be a race condition.

◮ It is therefore important to ensure that data only travels down
one edge whenever the function is called.

◮ Data flows through one of several mutually exclusive streams.

◮ The stream containing a vertex is found by following edges
downstream, then back upstream at every vertex encountered.

◮ If data flows through any edge in a stream, it flows through
all edges in that stream.

◮ So, if a stream has more than one edge converging on the
same input, a race condition exists.



Streams



Type Extension

(deftype (List ?x) (or NIL (Pair ?x (List ?x))))

(deftype (AList ?x ?y) (List (Pair ?x ?y)))

(deftype (Bag ?x) (AList ?x Int))

These resemble function definitions.
This suggests types could be defined like functions:

Figure: AList Figure: Bag



What Else Needs to be Done

◮ Experiment with Filters, Iterators and Collectors to find the
best ones.

◮ Debugger.

◮ Merge classes and types.

◮ Macros.



The End


	Related Systems
	Implementation Language
	Syntax
	Language Design
	Iteration
	The Interpreter
	Types
	Detecting Race Conditions
	Future Work

